Exosomal MALAT1 from Rapid Electrical Stimulation-Treated Atrial Fibroblasts Enhances Sox-6 Expression by Downregulating miR-499a-5p

快速电刺激处理的心房成纤维细胞中的外泌体 MALAT1 通过下调 miR-499a-5p 增强 Sox-6 表达

阅读:12
作者:Cheng-Yen Chuang, Bao-Wei Wang, Ying-Ju Yu, Wei-Jen Fang, Chiu-Mei Lin, Kou-Gi Shyu, Su-Kiat Chua

Background

Atrial fibrillation (AF) is a common cardiac arrhythmia associated with significant morbidity and mortality. Rapid electrical stimulation (RES) of atrial fibroblasts plays a crucial role in AF pathogenesis, but the underlying molecular mechanisms remain unclear. This study investigates the regulatory axis involving MALAT1, miR-499a-5p, and SOX6 in human cardiac fibroblasts from adult atria (HCF-aa) under RES conditions.

Conclusion

In HCF-aa under RES, increased exosomal MALAT1 expression counteracts miR-499-5p's suppression of SOX6, suggesting that MALAT1-containing exsosomes derived from HCF-aa may offer a novel cell-free therapeutic approach for AF.

Methods

HCF-aa were subjected to RES at 0.5 V/cm and 10 Hz. The expression levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), miR-499a-5p, and SRY-Box Transcription Factor 6 (SOX6) were measured using qPCR and Western blot analyses. Luciferase reporter assays were performed to confirm target relationships. The effects of MALAT1 siRNA, miR-499a-5p mimics/inhibitors, and SOX6 overexpression on gene expression and apoptosis were assessed.

Results

RES increased exosomal MALAT1 expression, peaking at 2 h. MiR-499a-5p levels initially increased, then decreased at 2 h, coinciding with peak MALAT1 expression. SOX6 mRNA and protein levels increased, peaking at 4 and 6 h, respectively. Luciferase assays confirmed MALAT1 and SOX6 as miR-499a-5p targets. MALAT1 knockdown increased miR-499a-5p levels and reduced SOX6 expression. MiR-499a-5p overexpression decreased SOX6 levels and inhibited RES-induced apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。