Production and characterization of a promising microbial-derived lipase enzyme targeting BCL-2 gene expression in hepatocellular carcinoma

一种有前景的微生物衍生脂肪酶的生产和表征,针对肝细胞癌中的 BCL-2 基因表达

阅读:7
作者:Amal M Abo-Kamer, Ahmed A Abdelaziz, Esraa S Elkotb, Lamiaa A Al-Madboly

Abstract

Context and goal: This study aimed to isolate and optimize a high-yield lipase-producing Pseudomonas aeruginosa strain from biological samples, enhance enzyme production through random mutagenesis, and evaluate its potential anticancer activity. Fifty-one biological samples (blood, urine, sputum, wound pus) were screened, and three isolates demonstrated significant lipase activity. The isolate with the highest activity, identified as P. aeruginosa (GenBank accession number PP436388), was subjected to ethidium bromide-induced mutagenesis, resulting in a two-fold increase in lipase activity (312 U/ml). Lipase production was optimized using submerged fermentation, with critical factors identified statistically as Tween 80, peptone, and substrate concentration. The enzyme was purified via ammonium sulfate precipitation and Sephadex G-100 chromatography, and its molecular weight (53 kDa) was confirmed by SDS-PAGE. Findings: Optimal conditions for enzyme production included a pH of 9, temperature of 20 °C, and a 24-h incubation period. The partially purified enzyme exhibited high stability at pH values up to 10 and storage temperatures of 4 °C. Anticancer activity was evaluated using the MTT assay, revealing an IC50 of 78.21 U/ml against human hepatocellular carcinoma using HepG-2 cells, with no cytotoxicity observed against Vero cells. Flow cytometry confirmed that the enzyme's anticancer potential was mediated through apoptosis and necrosis. QRT-PCR data revealed that the expression of the Bcl-2 gene was significantly downregulated by 62% (P < 0.05) following the treatment of HepG-2 cells with the lipase enzyme. These findings suggest that lipase from P. aeruginosa holds promise as a novel therapeutic agent for hepatocellular carcinoma, addressing the limitations of current treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。