Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons

大鼠面部运动神经元轴索切断后糖原合酶水平的暂时下调和恢复

阅读:4
作者:Yosuke Takezawa, Shinichi Kohsaka, Kazuyuki Nakajima

Abstract

In adult rats, transection of the facial nerve causes a functional down-regulation of motoneurons and glial activation/proliferation. It has not been clear how energy-supplying systems are regulated in an axotomized facial nucleus. Here we investigated the regulation of molecules involved in glycogen degradation/synthesis in axotomized facial nuclei in rats. Immunoblotting revealed that the amounts of glycogen phosphorylase in the contralateral and ipsilateral nuclei were unchanged for the first 14 days, whereas the amount of glycogen synthase in the axotomized facial nuclei was significantly decreased from days 7-14 post-insult. A quantitative analysis estimated that the glycogen synthase levels in the transected nucleus were reduced to approx. 50% at 14 days post-injury. An immunohistochemical study showed that the injured motoneurons had decreased expressions of glycogen synthase proteins. The glycogen synthase levels in the axotomized facial nucleus had returned to control levels by 5 weeks post-insult, as had the cholinergic markers. The immunohistochemical study also revealed the recovery of glycogen synthase levels at the later stage. The glycogen phosphorylase levels in the injured nucleus were not significantly changed during weeks 3-5 post-insult. Taken together, these results demonstrated that the injured facial motoneurons transiently reduced glycogen synthase levels at around 1-2 weeks post-insult, but restored the levels at 4-5 weeks post-insult.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。