Abstract
Calorie restriction (CR; ∼60%-65% of ad libitum consumption) can enhance insulin-stimulated glucose uptake (ISGU) in predominantly slow-twitch skeletal muscles (e.g., soleus) by an incompletely understood mechanism. We used an Akt inhibitor (MK-2206) to eliminate CR's effect on insulin-stimulated Akt2 phosphorylation in isolated rat soleus muscles. We found long-term CR-enhanced ISGU was abolished by eliminating the CR effect on Akt2 phosphorylation, suggesting the CR-induced benefit on ISGU in the predominantly slow-twitch soleus relies on enhanced Akt2 phosphorylation.
