Interpretable multi-modal artificial intelligence model for predicting gastric cancer response to neoadjuvant chemotherapy

可解释的多模态人工智能模型,用于预测胃癌对新辅助化疗的反应

阅读:7
作者:Peng Gao, Qiong Xiao, Hui Tan, Jiangdian Song, Yu Fu, Jingao Xu, Junhua Zhao, Yuan Miao, Xiaoyan Li, Yi Jing, Yingying Feng, Zitong Wang, Yingjie Zhang, Enbo Yao, Tongjia Xu, Jipeng Mei, Hanyu Chen, Xue Jiang, Yuchong Yang, Zhengyang Wang, Xianchun Gao, Minwen Zheng, Liying Zhang, Min Jiang, Yuying

Abstract

Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846-0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。