Mutation/metal deficiency in the "electrostatic loop" enhanced aggregation process in apo/holo SOD1 variants: implications for ALS diseases

“静电环”突变/金属缺乏增强了 apo/holo SOD1 变体中的聚集过程:对 ALS 疾病的影响

阅读:9
作者:Faezeh Ashkaran, Bagher Seyedalipour, Payam Baziyar, Saman Hosseinkhani

Abstract

Despite the many mechanisms it has created to prevent unfolding and aggregation of proteins, many diseases are caused by abnormal folding of proteins, which are called misfolding diseases. During this process, proteins undergo structural changes and become stable, insoluble beta-sheet aggregates called amyloid fibrils. Mutations/disruptions in metal ion homeostasis in the ALS-associated metalloenzyme superoxide dismutase (SOD1) reduce conformational stability, consistent with the protein aggregation hypothesis for neurodegenerative diseases. However, the exact mechanism of involvement is not well understood. Hence, to understand the role of mutation/ metal deficiency in SOD1 misfolding and aggregation, we investigated the effects of apo/holo SOD1 variants on structural properties using biophysical/experimental techniques. The MD results support the idea that the mutation/metal deficiency can lead to a change in conformation. The increased content of β-sheet structures in apo/holo SOD1 variants can be attributed to the aggregation tendency, which was confirmed by FTIR spectroscopy and dictionary of secondary structure in proteins (DSSP) results. Thermodynamic studies of GdnHCl showed that metal deficiency/mutation/intramolecular S-S reduction together are required to initiate misfolding/aggregation of SOD1. The results showed that apo/holo SOD1 variants under destabilizing conditions induced amyloid aggregates at physiological pH, which were detected by ThT/ANS fluorescence, as well as further confirmation of amyloid/amorphous species by TEM. This study confirms that mutations in the electrostatic loop of SOD1 lead to structural abnormalities, including changes in hydrophobicity, reduced disulfide bonds, and an increased propensity for protein denaturation. This process facilitates the formation of amyloid/amorphous aggregates ALS-associated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。