Hepatic injury is associated with cell cycle arrest and apoptosis with alteration of cyclin A and D1 in ammonium chloride-induced hyperammonemic rats

氯化铵诱发的高氨血症大鼠肝损伤与细胞周期停滞和细胞凋亡有关,且与细胞周期蛋白 A 和 D1 的改变有关

阅读:5
作者:Xiaojuan Gao, Lei Fan, Hua Li, Juan Li, Xiaorui Liu, Ranran Sun, Zujiang Yu

Abstract

Hyperammonemia is considered to be central to the pathophysiology of hepatic encephalopathy in patients exhibiting hepatic failure (HF). It has previously been determined that hyperammonemia is a serious metabolic disorder commonly observed in patients with HF. However, it is unclear whether hyperammonemia has a direct adverse effect on hepatic cells or serves as a cause and effect of HF. The present study investigated whether hepatic injury is caused by hyperammonemia, and aimed to provide an insight into the causes and mechanisms of HF. Hyperammonemic rats were established via intragastric administration of ammonium chloride solution. Hepatic tissues were assessed using biochemistry, histology, immunohistochemistry, flow cytometry (FCM), semi-quantitative reverse transcription-polymerase chain reaction and western blot analysis. Hyperammonemic rats exhibited significantly increased levels of liver function markers, including alanine transaminase (P<0.01), aspartate aminotransferase (P<0.01), blood ammonia (P<0.01) and direct bilirubin (P<0.05), which indicated hepatic injury. A pathological assessment revealed mild hydropic degeneration, but no necrosis or inflammatory cell infiltration. However, terminal deoxynucleotidyl transferase dUTP nick end-labeling assays confirmed a significant increase in the rate of cellular apoptosis in hyperammonemic rat livers (P<0.01). FCM analysis revealed that there were significantly more cells in the S phase and fewer in the G2/M phase (P<0.01), and the expression levels of cyclin A and D1 mRNA and proteins were significantly increased (P<0.01). In summary, cell cycle arrest, apoptosis and an alteration of cyclin A and D1 levels were all markers of hyperammonemia-induced hepatic injury. These findings provide an insight into the potential mechanisms underlying hyperammonemia-induced hepatic injury, and may be used as potential targets for treating or preventing hepatic damage caused by hyperammonemia, including hepatic encephalopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。