Active Control of Plasmonic-Photonic Interactions in a Microbubble Cavity

微泡腔内等离子体-光子相互作用的主动控制

阅读:4
作者:Feng Pan, Kristoffer Karlsson, Austin G Nixon, Levi T Hogan, Jonathan M Ward, Kevin C Smith, David J Masiello, Síle Nic Chormaic, Randall H Goldsmith

Abstract

Active control of light-matter interactions using nanophotonic structures is critical for new modalities for solar energy production, cavity quantum electrodynamics (QED), and sensing, particularly at the single-particle level, where it underpins the creation of tunable nanophotonic networks. Coupled plasmonic-photonic systems show great promise toward these goals because of their subwavelength spatial confinement and ultrahigh-quality factors inherited from their respective components. Here, we present a microfluidic approach using microbubble whispering-gallery mode cavities to actively control plasmonic-photonic interactions at the single-particle level. By changing the solvent in the interior of the microbubble, control can be exerted on the interior dielectric constant and, thus, on the spatial overlap between the photonic and plasmonic modes. Qualitative agreement between experiment and simulation reveals the competing roles mode overlap and mode volume play in altering coupling strengths.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。