Vascular endothelial growth factor increased the permeability of respiratory barrier in acute respiratory distress syndrome model in mice

血管内皮生长因子增加小鼠急性呼吸窘迫综合征模型呼吸道屏障通透性

阅读:9
作者:Zhao Zhang, Zhouyang Wu, Younian Xu, Dongshi Lu, Shihai Zhang

Background

Acute respiratory distress syndrome is associated with a mortality of 45%. The authors investigated the possible mechanisms and effect of vascular endothelial growth factor on alveolar epithelial barrier permeability in acute respiratory distress syndrome mice model.

Conclusions

Our data indicate that anti-vascular endothelial growth factor with soluble fms-like tyrosine kinase-1 could maintain the normal structure and function of respiratory membrane in acute respiratory distress syndrome mice model and might be a suitable therapeutic tool for the treatment of acute respiratory distress syndrome.

Methods

Eighty Male BALB/c mice were randomly assigned to four group: PBS group, LPS group, sFlt group, or LPS + sFlt group. The levels of vascular endothelial growth factor and total protein in bronchoalveolar lavage fluid were compared, together with lung injury score and the histopathology of alveolar epithelial barrier. The expressions of vascular endothelial growth factor and tight junction proteins mRNA in lung tissue were also studied.

Results

Lipopolysaccharide (LPS) inhaling was accompanied with increasing lung vascular endothelial growth factor (VEGF) expression. Anti-VEGF with soluble fms-like tyrosine kinase-1 (sFlt-1) attenuated the lung injury effectively. Conclusions: Our data indicate that anti-vascular endothelial growth factor with soluble fms-like tyrosine kinase-1 could maintain the normal structure and function of respiratory membrane in acute respiratory distress syndrome mice model and might be a suitable therapeutic tool for the treatment of acute respiratory distress syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。