Identification of a novel site of interaction between ataxin-3 and the amyloid aggregation inhibitor polyglutamine binding peptide 1

鉴定共济失调蛋白-3与淀粉样蛋白聚集抑制剂多聚谷氨酰胺结合肽1之间的新相互作用位点

阅读:7
作者:Patrick D Knight, Theodoros K Karamanos, Sheena E Radford, Alison E Ashcroft

Abstract

Amyloid diseases represent a growing social and economic burden in the developed world. Understanding the assembly pathway and the inhibition of amyloid formation is key to developing therapies to treat these diseases. The neurodegenerative condition Machado-Joseph disease is characterised by the self-aggregation of the protein ataxin-3. Ataxin-3 consists of a globular N-terminal Josephin domain, which can aggregate into curvilinear protofibrils, and an unstructured, dynamically disordered C-terminal domain containing three ubiquitin interacting motifs separated by a polyglutamine stretch. Upon expansion of the polyglutamine region above 50 residues, ataxin-3 undergoes a second stage of aggregation in which long, straight amyloid fibrils form. A peptide inhibitor of polyglutamine aggregation, known as polyQ binding peptide 1, has been shown previously to prevent the maturation of ataxin-3 fibrils. However, the mechanism of this inhibition remains unclear. Using nanoelectrospray ionisation-mass spectrometry, we demonstrate that polyQ binding peptide 1 binds to monomeric ataxin-3. By investigating the ability of polyQ binding peptide 1 to bind to truncated ataxin-3 constructs lacking one or more domains, we localise the site of this interaction to a 39-residue sequence immediately C-terminal to the Josephin domain. The results suggest a new mechanism for the inhibition of polyglutamine aggregation by polyQ binding peptide 1 in which binding to a region outside of the polyglutamine tract can prevent fibril formation, highlighting the importance of polyglutamine flanking regions in controlling aggregation and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。