Preparation of a Sustainable Shape-Stabilized Phase Change Material for Thermal Energy Storage Based on Mg2+-Doped CaCO3/PEG Composites

基于 Mg2+ 掺杂 CaCO3/PEG 复合材料的可持续形状稳定相变储热材料的制备

阅读:5
作者:Md Hasan Zahir, Mohammad Mominur Rahman, Salem K S Basamad, Khaled Own Mohaisen, Kashif Irshad, Mohammad Mizanur Rahman, Md Abdul Aziz, Amjad Ali, Mohammad M Hossain

Abstract

The properties of polyethylene glycol-6000 (PEG)/MgCaCO3, a low-cost shape-selective phase change material (ss-PCM), make it highly suitable for solar thermal applications. Nanosized porous MgO-doped CaCO3 with Mg molar concentrations of 5%, 10%, and 15% were synthesized using a hydrothermal technique. The prepared MgO-CaCO3 matrices were then impregnated with PEG to obtain PEG/MgCaCO3 as an ss-PCM. Samples identified as PEG-5MgCaCO3 (P-5-MCC), PEG-10MgCaCO3 (P-10-MCC), and PEG-15MgCaCO3 (P-15-MCC) were prepared and studied. Interestingly, P-10-MCC has the smallest particle size together with a good porous structure compared to the other two materials. The results of thermogravimetric analyses and differential scanning calorimetry indicate that the small particle size and porous structure facilitate the impregnation of approximately 69% of the PEG into the 10-MCC matrix. The latent heat and energy storage efficiency of PEG in the P-10-MCC sample are 152.5 J/g and 96.48%, respectively, which are significantly higher than those of comparable materials. Furthermore, in addition to the improvement of the thermal conductivity of the P-10-MCC, its supercooling is also reduced to some extent. The combined mesoporous and macro-porous structure of P-10-MCC is critical to retaining a large amount of PEG within the matrix, resulting in a high latent heat in the operating temperature range of 35-57 °C. The P-10MCC sample also demonstrates a high energy storage capacity (98.59%), high thermal energy storage/release rates, and exceptional shape-stabilized PCM properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。