The Azoarcus anaerobius 1,3-Dihydroxybenzene (Resorcinol) Anaerobic Degradation Pathway Is Controlled by the Coordinated Activity of Two Enhancer-Binding Proteins

厌氧固氮弓形菌 1,3-二羟基苯(间苯二酚)厌氧降解途径由两种增强子结合蛋白的协同活性控制

阅读:8
作者:Daniel Pacheco-Sánchez, Águeda Molina-Fuentes, Patricia Marín, Javier-I Medina-Bellver, Óscar González-López, Silvia Marqués

Abstract

The anaerobic resorcinol degradation pathway in Azoarcus anaerobius is unique in that it uses an oxidative rather than a reductive strategy to overcome the aromatic ring stability in degradation of this compound, in a process that is dependent on nitrate respiration. We show that the pathway is organized in five transcriptional units, three of which are inducible by the presence of the substrate. Three σ54-dependent promoters located upstream from the three operons coding for the main pathway enzymes were identified, which shared a similar structure with conserved upstream activating sequences (UASs) located at 103 to 111 bp from the transcription start site. Expression of the pathway is controlled by the bacterial enhancer-binding proteins (bEBPs) RedR1 and RedR2, two homologous regulators that, despite their high sequence identity (97%), have nonredundant functions: RedR2, the master regulator which also controls RedR1 expression, is itself able to promote transcription from two of the promoters, while RedR1 activity is strictly dependent on the presence of RedR2. The two regulators were shown to interact with each other, suggesting that the natural mode of activation is by forming heterodimers, which become active in the presence of the substrate after its metabolization to hydroxybenzoquinone through the pathway enzymes. The model structure of the N-terminal domain of the proteins is composed of tandem GAF and PAS motifs; the possible mechanisms controlling the activity of the regulators are discussed.IMPORTANCEAzoarcus anaerobius is a strict anaerobe that is able to use 1,3-dihydroxybenzene as the sole carbon source in a process that is dependent on nitrate respiration. We have shown that expression of the pathway is controlled by two regulators of almost identical sequences: the bEBPs RedR1 and RedR2, which share 97% identity. These regulators control three promoters with similar structure. Despite their sequence identity, the two bEBPs are not redundant and are both required for maximum pathway expression. In fact, the two proteins function as heterodimers and require activation by the pathway intermediate hydroxyhydroquinone. The structure of the domain sensing the activation signal resembles that of regulators that are known to interact with other proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。