EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion

EctD 介导的化学伴侣蛋白四氢嘧啶生物转化为羟基四氢嘧啶及其机械敏感通道非依赖性排泄

阅读:7
作者:Laura Czech, Nadine Stöveken, Erhard Bremer

Background

Ectoine and its derivative 5-hydroxyectoine are cytoprotectants widely synthesized by microorganisms as a defense against the detrimental effects of high osmolarity on cellular physiology and growth. Both ectoines possess the ability to preserve the functionality of proteins, macromolecular complexes, and even entire cells, attributes that led to their description as chemical chaperones. As a consequence, there is growing interest in using ectoines for biotechnological purposes, in skin care, and in medical applications. 5-Hydroxyectoine is synthesized from ectoine through a region- and stereo-specific hydroxylation reaction mediated by the EctD enzyme, a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenases. This chemical modification endows the newly formed 5-hydroxyectoine with either superior or different stress- protecting and stabilizing properties. Microorganisms producing 5-hydroxyectoine typically contain a mixture of both ectoines. We aimed to establish a recombinant microbial cell factory where 5-hydroxyectoine is (i) produced in highly purified form, and (ii) secreted into the growth medium.

Conclusions

We describe here a recombinant E. coli cell factory for the production and secretion of the chemical chaperone 5-hydroxyectoine free from contaminating ectoine.

Results

We used an Escherichia coli strain (FF4169) defective in the synthesis of the osmostress protectant trehalose as the chassis for our recombinant cell factory. We expressed in this strain a plasmid-encoded ectD gene from Pseudomonas stutzeri A1501 under the control of the anhydrotetracycline-inducible tet promoter. We chose the ectoine hydroxylase from P. stutzeri A1501 for our cell factory after a careful comparison of the in vivo performance of seven different EctD proteins. In the final set-up of the cell factory, ectoine was provided to salt-stressed cultures of strain FF4169 (pMP41; ectD (+)). Ectoine was imported into the cells via the osmotically inducible ProP and ProU transport systems, intracellularly converted to 5-hydroxyectoine, which was then almost quantitatively secreted into the growth medium. Experiments with an E. coli mutant lacking all currently known mechanosensitive channels (MscL, MscS, MscK, MscM) revealed that the release of 5-hydroxyectoine under osmotic steady-state conditions occurred independently of these microbial safety valves. In shake-flask experiments, 2.13 g l(-1) ectoine (15 mM) was completely converted into 5-hydroxyectoine within 24 h. Conclusions: We describe here a recombinant E. coli cell factory for the production and secretion of the chemical chaperone 5-hydroxyectoine free from contaminating ectoine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。