Lactobacillus paracasei PS23 decelerated age-related muscle loss by ensuring mitochondrial function in SAMP8 mice

副干酪乳杆菌 PS23 通过确保 SAMP8 小鼠的线粒体功能减缓与年龄相关的肌肉损失

阅读:5
作者:Li-Han Chen #, Shih-Yi Huang #, Kuo-Chin Huang, Chih-Chieh Hsu, Kuen-Cheh Yang, Lin-Ai Li, Ching-Hung Chan, Hui-Yu Huang

Abstract

Sarcopenia is a common impairment in the elderly population responsible for poor outcomes later in life; it can be caused by age-related alternations. Only a few strategies have been reported to reduce sarcopenia. Lactobacillus paracasei PS23 (LPPS23) has been reported to delay some age-related disorders. Therefore, here we investigated whether LPPS23 decelerates age-related muscle loss and its underlying mechanism. Female senescence-accelerated mouse prone-8 (SAMP8) mice were divided into three groups (n=6 each): non-aging (16-week-old), control (28-week-old), and PS23 (28-week-old) groups. The control and PS23 groups were given saline and LPPS23, respectively. We evaluated the effects of LPPS23 by analyzing body weight and composition, muscle strength, protein uptake, mitochondrial function, reactive oxygen species (ROS), antioxidant enzymes, and inflammation-related cytokines. LPPS23 significantly attenuated age-related decreases of muscle mass and strength. Compared to the control group, the non-aging and PS23 groups exhibited higher mitochondrial function, IL10, antioxidant enzymes, and protein uptake. Moreover, inflammatory cytokines and ROS were lower in the non-aging and PS23 groups than the control group. Taken together, LPPS23 extenuated sarcopenia progression during aging; this effect might have been enacted by preserving the mitochondrial function via reducing age-related inflammation and ROS and by retaining protein uptake in the SAMP8 mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。