Characterization of a novel microfluidic platform for the isolation of rare single cells to enable CTC analysis from head and neck squamous cell carcinoma patients

表征一种用于分离稀有单细胞的新型微流体平台,以便对头颈部鳞状细胞癌患者进行 CTC 分析

阅读:4
作者:Janis Stiefel, Christian Freese, Ashwin Sriram, Sabine Alebrand, Nalini Srinivas, Christoph Sproll, Madita Wandrey, Désirée Gül, Jan Hagemann, Jürgen C Becker, Michael Baßler

Abstract

Detailed examination of tumor components is leading-edge to establish personalized cancer therapy. Accompanying research on cell-free DNA, the cell count of circulating tumor cells (CTCs) in patient blood is seen as a crucial prognostic factor. The potential of CTC analysis is further not limited to the determination of the overall survival rate but sheds light on understanding inter- and intratumoral heterogeneity. In this regard, commercial CTC isolation devices combining an efficient enrichment of rare cells with a droplet deposition of single cells for downstream analysis are highly appreciated. The Liquid biopsy platform CTCelect was developed to realize a fully-automated enrichment and single cell dispensing of CTCs from whole blood without pre-processing. We characterized each process step with two different carcinoma cell lines demonstrating up to 87 % enrichment (n = 10) with EpCAM coupled immunomagnetic beads, 73 % optical detection and dispensing efficiency (n = 5). 40 to 56.7 % of cells were recovered after complete isolation from 7.5 ml untreated whole blood (n = 6). In this study, CTCelect enabled automated dispensing of single circulating tumor cells from HNSCC patient samples, qPCR-based confirmation of tumor-related biomarkers and immunostaining. Finally, the platform was compared to commercial CTC isolation technologies to highlight advantages and limitations of CTCelect. This system offers new possibilities for single cell screening in cancer diagnostics, individual therapy approaches and real-time monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。