Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway

Kisspeptin通过调节PI3K/AKT/ERK信号通路调控多囊卵巢综合征卵巢颗粒细胞的增殖和凋亡

阅读:5
作者:Pingping Sun, Yuemin Zhang, Lilan Sun, Na Sun, Jinguang Wang, Huagang Ma

Background

The development of polycystic ovary syndrome (PCOS) is closely correlated with apoptosis and oxidative stress in ovarian granulosa cells. Kisspeptin plays an important role in reproductive organ function. This study aimed to explore the role of kisspeptin in PCOS and oxidative stress-triggered apoptosis of ovarian granular cells.

Conclusion

Kisspeptin improves proliferation and alleviates apoptosis and oxidative stress in ovarian granulosa cells by activating PI3K/AKT and ERK signalling.

Methods

A PCOS rat model was established by injecting dehydroepiandrosterone (DHEA) and feeding the rats a high-fat diet. The RNA and protein levels of kisspeptin were analysed by quantitative PCR, western blotting, and histological staining. Tissue damage was evaluated using haematoxylin and eosin (H&E) staining. The viability and proliferation of human granulosa cell KGN were measured using the cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and apoptosis were analysed by flow cytometry. Oxidative stress was analysed by measuring reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels.

Results

Kisspeptin was downregulated in the ovarian granulosa cells of PCOS rats compared to those of control rats. Kisspeptin overexpression enhanced KGN cell proliferation and inhibited apoptosis. ROS generation was suppressed by kisspeptin, along with decreased levels of MDA and increased levels of the antioxidants GSH, SOD, and CAT. Kisspeptin activates PI3K/AKT and ERK signalling, and inactivation of ERK1/2 suppresses the protective role of kisspeptin in ovarian granulosa cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。