Fatty acid synthase mediates high glucose-induced EGFR activation in oral dysplastic keratinocytes

脂肪酸合酶介导口腔发育不良角质形成细胞中高糖诱导的 EGFR 活化

阅读:8
作者:David J Wisniewski, Tao Ma, Abraham Schneider

Background

Recent studies point to the epidermal growth factor receptor (EGFR) as a critical mediator of type 2 diabetes mellitus (T2DM)-induced renal, cardiac, and ocular complications. T2DM is considered a systemic contributing factor in oral carcinogenesis. Similarly, increased EGFR gene copy number and protein expression strongly predict tumor progression. Yet, the impact of hyperglycemia on EGFR activity in oral potentially malignant disorders remains unclear. We recently reported that fatty acid synthase (FASN), a key de novo lipogenic enzyme, mediates EGFR activation in nicotine-treated oral dysplastic keratinocytes. While in non-malignant tissues FASN expression is extremely low, it is frequently upregulated in several cancers, including oral squamous cell carcinoma. The present study was carried out to investigate whether high glucose conditions trigger pro-oncogenic responses in oral dysplastic keratinocytes via FASN-mediated EGFR activation.

Conclusion

These novel findings suggest that FASN may act as a key targetable metabolic regulator of glucose-induced EGFR oncogenic signaling in oral potentially malignant disorders.

Methods

Cell viability and migration of oral dysplastic keratinocytes were evaluated when exposed to normal (5 mM) or high (20 mM) glucose conditions in the presence of FASN and EGFR inhibitors. Western blotting was also performed to assess changes in FASN protein expression and EGFR activation.

Results

Oral dysplastic keratinocytes exposed to high glucose led to EGFR activation in a FASN-dependent manner. Likewise, high glucose significantly enhanced cell viability and migration in a FASN/EGFR-mediated fashion. Notably, EGFR inhibition by the anti-EGFR monoclonal antibody cetuximab significantly reduced the proliferation of FASN-overexpressing oral dysplastic keratinocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。