Upregulation of VEGF-A and CD24 gene expression by the tGLI1 transcription factor contributes to the aggressive behavior of breast cancer cells

tGLI1 转录因子上调 VEGF-A 和 CD24 基因表达,导致乳腺癌细胞表现出侵袭性行为

阅读:8
作者:X Cao, J Geradts, M W Dewhirst, H-W Lo

Abstract

The Hedgehog signaling pathway is one of the most dysregulated pathways in human cancers. The glioma-associated oncogene homolog 1 (GLI1) transcription factor is the terminal effector of the Hedgehog pathway, frequently activated in human breast cancer and an emerging target of breast cancer therapy. While somatic mutations in the human GLI1 gene have never been reported in any cell or tumor type, we recently uncovered the existence of a novel alternatively spliced, truncated GLI1 (tGLI1) that has an in-frame deletion of 41 codons spanning the entire exon 3 and part of exon 4 of the GLI1 gene. Using glioblastoma models, we showed that tGLI1 has gained the ability to promote glioblastoma migration and invasion via its gain-of-function transcriptional activity. However, the pathological impact of tGLI1 on breast cancer remains undefined. Here, we report that tGLI1 is frequently expressed in human breast cancer cell lines and primary specimens we have examined to date, but is undetectable in normal breast tissues. We found for the first time that tGLI1, but not GLI1, binds to and enhances the human vascular endothelial growth factor-A (VEGF-A) gene promoter, leading to its upregulation. Consequently, tGLI1-expressing MDA-MB-231 breast cancer cells secret higher levels of VEGF-A and contain a higher propensity, than the isogenic cells with control vector and GLI1, to stimulate in vitro angiogenesis of human vascular endothelial cells. We further showed that tGLI1 has gained the ability to enhance the motility and invasiveness of breast cancer cells in a proliferation-independent manner and that this functional gain is associated with increased expression of migration/invasion-associated genes, CD24, MMP-2 and MMP-9. tGLI1 has also acquired the property to facilitate anchorage-independent growth of breast cancer cells. Collectively, our results define tGLI1 as a gain-of-function GLI1 transcription factor and a novel mediator of the behavior of clinically more aggressive breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。