Identification of Potential Therapeutics for Infantile Hemangioma via in silico Investigation and in vitro Validation

通过计算机模拟研究和体外验证确定婴儿血管瘤的潜在治疗方法

阅读:5
作者:Wei Lu #, Zhenyu Yang #, Mengjie Wang, Ye Zhang, Zuoliang Qi, Xiaonan Yang

Conclusion

Our investigation revealed that the pathogenic mechanism underlying IH might be closely associated with the PI3K/AKT/MTOR, RAS/MAPK, and CGMP/PKG signaling pathways. Furthermore, we identified twelve molecular-targeting agents among the predicted drugs that show promise as therapeutic candidates for IH.

Methods

Utilizing the IH-specific dataset GSE127487 from the Gene Expression Omnibus, we identified differentially expressed genes (DEGs) and conducted weighted gene coexpression network analysis (WGCNA). Subsequently, a protein-protein interaction (PPI) network was constructed to obtain the top 100 hub genes. Drug candidates were sourced from the Connectivity Map (CMap) and Comparative Toxicogenomics Database (CTD).

Results

Our analysis revealed 1203 DEGs and a significant module of 1780 mRNAs strongly correlated with IH. These genes were primarily enriched in the PI3K/AKT/MTOR, RAS/MAPK, and CGMP/PKG signaling pathway. After creating a PPI network of overlapping genes, we filtered out the top 100 hub genes. Ultimately, 44 non-toxic drugs were identified through the CMap and CTD databases. Twelve molecular-targeting agents (belinostat, chir 99021, dasatinib, entinostat, panobinostat, sirolimus, sorafenib, sunitinib, thalidomide, U 0126, vorinostat, and wortmannin) may be potential candidates for IH therapy. Moreover, in vitro experiments demonstrated that entinostat, sorafenib, dasatinib, and sirolimus restricted the proliferation and migration and initiated apoptosis in HemEC cells, thereby underscoring their potential therapeutic value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。