The iron nitrogenase reduces carbon dioxide to formate and methane under physiological conditions: A route to feedstock chemicals

铁固氮酶在生理条件下将二氧化碳还原为甲酸盐和甲烷:一种生产原料化学品的途径

阅读:20
作者:Niels N Oehlmann, Frederik V Schmidt, Marcello Herzog, Annelise L Goldman, Johannes G Rebelein

Abstract

Nitrogenases are the only known enzymes that reduce molecular nitrogen (N2) to ammonia. Recent findings have demonstrated that nitrogenases also reduce the greenhouse gas carbon dioxide (CO2), suggesting CO2 to be a competitor of N2. However, the impact of omnipresent CO2 on N2 fixation has not been investigated to date. Here, we study the competing reduction of CO2 and N2 by the two nitrogenases of Rhodobacter capsulatus, the molybdenum and the iron nitrogenase. The iron nitrogenase is almost threefold more efficient in CO2 reduction and profoundly less selective for N2 than the molybdenum isoform under mixtures of N2 and CO2. Correspondingly, the growth rate of diazotrophically grown R. capsulatus strains relying on the iron nitrogenase notably decreased after adding CO2. The in vivo CO2 activity of the iron nitrogenase facilitates the light-driven extracellular accumulation of formate and methane, one-carbon substrates for other microbes, and feedstock chemicals for a circular economy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。