Structural determinants for ligand capture by a class II preQ1 riboswitch

II 类 preQ1 核糖开关捕获配体的结构决定因素

阅读:6
作者:Mijeong Kang, Catherine D Eichhorn, Juli Feigon

Abstract

Prequeuosine (preQ1) riboswitches are RNA regulatory elements located in the 5' UTR of genes involved in the biosynthesis and transport of preQ1, a precursor of the modified base queuosine universally found in four tRNAs. The preQ1 class II (preQ1-II) riboswitch regulates preQ1 biosynthesis at the translational level. We present the solution NMR structure and conformational dynamics of the 59 nucleotide Streptococcus pneumoniae preQ1-II riboswitch bound to preQ1. Unlike in the preQ1 class I (preQ1-I) riboswitch, divalent cations are required for high-affinity binding. The solution structure is an unusual H-type pseudoknot featuring a P4 hairpin embedded in loop 3, which forms a three-way junction with the other two stems. (13)C relaxation and residual dipolar coupling experiments revealed interhelical flexibility of P4. We found that the P4 helix and flanking adenine residues play crucial and unexpected roles in controlling pseudoknot formation and, in turn, sequestering the Shine-Dalgarno sequence. Aided by divalent cations, P4 is poised to act as a "screw cap" on preQ1 recognition to block ligand exit and stabilize the binding pocket. Comparison of preQ1-I and preQ1-II riboswitch structures reveals that whereas both form H-type pseudoknots and recognize preQ1 using one A, C, or U nucleotide from each of three loops, these nucleotides interact with preQ1 differently, with preQ1 inserting into different grooves. Our studies show that the preQ1-II riboswitch uses an unusual mechanism to harness exquisite control over queuosine metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。