Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation

急性血糖波动影响小胶质细胞活动,导致炎症激活或自我降解

阅读:7
作者:Cheng-Fang Hsieh, Ching-Kuan Liu, Ching-Tien Lee, Liang-En Yu, Jiz-Yuh Wang

Abstract

Diabetes mellitus is associated with an increased risk of Alzheimer's dementia and cognitive decline. The cause of neurodegeneration in chronic diabetic patients remains unclear. Changes in brain microglial activity due to glycemic fluctuations may be an etiological factor. Here, we examined the impact of acute ambient glucose fluctuations on BV-2 microglial activity. Biochemical parameters were assayed and showed that the shift from normal glucose (NG; 5.5 mM) to high glucose (HG; 25 mM) promoted cell growth and induced oxidative/inflammatory stress and microglial activation, as evidenced by increased MTT reduction, elevated pro-inflammatory factor secretion (i.e., TNF-α and oxygen free radicals), and upregulated expression of stress/inflammatory proteins (i.e., HSP70, HO-1, iNOS, and COX-2). Also, LPS-induced inflammation was enlarged by an NG-to-HG shift. In contrast, the HG-to-NG shift trapped microglia in a state of metabolic stress, which led to apoptosis and autophagy, as evidenced by decreased Bcl-2 and increased cleaved caspase-3, TUNEL staining, and LC3B-II expression. These stress episodes were primarily mediated through MAPKs, PI3K/Akt, and NF-κB cascades. Our study demonstrates that acute glucose fluctuation forms the stress that alters microglial activity (e.g., inflammatory activation or self-degradation), representing a novel pathogenic mechanism for the continued deterioration of neurological function in diabetic patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。