Increased BBB permeability contributes to EGCG-caused cognitive function improvement in natural aging rats: pharmacokinetic and distribution analyses

BBB 通透性增加有助于 EGCG 改善自然衰老大鼠的认知功能:药代动力学和分布分析

阅读:7
作者:Bin-Bin Wei, Ming-Yan Liu, Xin Zhong, Wei-Fan Yao, Min-Jie Wei

Abstract

Previous studies report that (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic ingredient in green tea, has high efficacy against Alzheimer's disease (AD) in various in vivo and in vitro models. However, as a water-soluble component, how EGCG exerts its anti-AD effects in the brain was not elucidated. In the present study, we investigated the anti-AD mechanisms of EGCG in natural aging rats with cognitive impairments (CIs) assessed using Morris water maze. The rats were treated with EGCG (100 mg/kg per day, intragastrically) for 4 weeks. The expression of β-amyloid (Aβ1-42) in the brain was detected with immunohistochemical staining. We showed that EGCG administration significantly ameliorated the CI in the aging rats with CI and decreased Aβ1-42 plaque formation in their brains. Then we used an efficient ultra-performance liquid chromatography-tandem mass spectrometer method to evaluate EGCG concentrations in rat plasma and tissue distribution. We found that EGCG absorption was significantly increased in the aging with CI group compared with control young rats. After oral administration of EGCG (100 mg), EGCG could not be detected in the brain tissues of control young rats, but it was found in the brain tissue of aging rats with CI. By using Evans Blue assay, transmission electron microscopy, and Western blotting assay, we demonstrated that the permeability of blood-brain barrier (BBB) was significantly increased in aging rats with CI. These results suggest that the permeability change of BBB is the physiological structural basis for EGCG treatment to improve learning and memory, thus providing a solid evidence for EGCG druggability in anti-AD therapeutic field.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。