Osteoclast differentiation and dynamic mRNA expression during mice embryonic palatal bone development

小鼠胚胎腭骨发育过程中破骨细胞的分化及mRNA的动态表达

阅读:5
作者:Yongzhen Lai, Yan Guo, Caiyu Liao, Chuanqing Mao, Jing Liu, Chengyan Ren, Wen Yang, Lin Luo, Weihui Chen

Abstract

This study is the first to investigate the process of osteoclast (OCL) differentiation, its potential functions, and the associated mRNA and signalling pathways in embryonic palatal bone. Our findings suggest that OCLs are involved in bone remodelling, bone marrow cavity formation, and blood vessel formation in embryonic palatal bone. We observed TRAP-positive OCLs at embryonic day 16.5 (E16.5), E17.5, and E18.5 at the palatal process of the palate (PPP) and posterior and anterior parts of the palatal process of the maxilla (PPMXP and PPMXA, respectively), with OCL differentiation starting 2 days prior to TRAP positivity. By comparing the key periods of OCL differentiation between PPMX and PPP (E14.5, E15.5, and E16.5) using RNA-seq data of the palates, we found that the PI3K-AKT and MAPK signalling pathways were sequentially enriched, which may play critical roles in OCL survival and differentiation. Csf1r, Tnfrsff11a, Ctsk, Fos, Tyrobp, Fcgr3, and Spi1 were significantly upregulated, while Pik3r3, Tgfbr1, and Mapk3k7 were significantly downregulated, in both PPMX and PPP. Interestingly, Tnfrsff11b was upregulated in PPMX but downregulated in PPP, which may regulate the timing of OCL appearance. These results contribute to the limited knowledge regarding mRNA-specific steps in OCL differentiation in the embryonic palatal bone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。