Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants

CDC14 突变体中的检查点无法识别的染色体复制不足揭示了 CDC14 在 DNA 合成中发挥的重要作用

阅读:11
作者:Stanimir Dulev, Christelle de Renty, Rajvi Mehta, Ivan Minkov, Etienne Schwob, Alexander Strunnikov

Abstract

The CDC14 family of multifunctional evolutionarily conserved phosphatases includes major regulators of mitosis in eukaryotes and of DNA damage response in humans. The CDC14 function is also crucial for accurate chromosome segregation, which is exemplified by its absolute requirement in yeast for the anaphase segregation of nucleolar organizers; however the nature of this essential pathway is not understood. Upon investigation of the rDNA nondisjunction phenomenon, it was found that cdc14 mutants fail to complete replication of this locus. Moreover, other late-replicating genomic regions (10% of the genome) are also underreplicated in cdc14 mutants undergoing anaphase. This selective genome-wide replication defect is due to dosage insufficiency of replication factors in the nucleus, which stems from two defects, both contingent on the reduced CDC14 function in the preceding mitosis. First, a constitutive nuclear import defect results in a drastic dosage decrease for those replication proteins that are regulated by nuclear transport. Particularly, essential RPA subunits display both lower mRNA and protein levels, as well as abnormal cytoplasmic localization. Second, the reduced transcription of MBF and SBF-controlled genes in G1 leads to the reduction in protein levels of many proteins involved in DNA replication. The failure to complete replication of late replicons is the primary reason for chromosome nondisjunction upon CDC14 dysfunction. As the genome-wide slow-down of DNA replication does not trigger checkpoints [Lengronne A, Schwob E (2002) Mol Cell 9:1067-1078], CDC14 mutations pose an overwhelming challenge to genome stability, both generating chromosome damage and undermining the checkpoint control mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。