Abstract
Messenger RNA (mRNA) vaccine has fueled a great hope for cancer immunotherapy. However, low immunogenicity, caused by inefficient mRNA expression and weak immune stimulation, hampers the efficacy of mRNA vaccines. Here, we present an mRNA compartmentalization-based cancer vaccine, comprising a multimodule DNA nanostructure (MMDNS)-assembled compartment for efficient mRNA translation via in situ localizing mRNA concentration and relevant reaction molecules. The MMDNS is constructed via programmable DNA hybridization chain reaction (HCR)-based strategy, with integrating antigen-coded mRNA, CpG oligodeoxynucleotides (ODNs), acidic-responsive DNA sequence, and dendritic cells targeting aptamer. MMDNS undergoes in situ assembly in acidic lysosomes to form a micro-sized aggregate, inducing an enhanced CpG ODN adjuvant efficacy. Subsequently, the aggregates escape into cytoplasm, providing a moderate compartment which supports the efficient translation of spatially proximal mRNA transcripts via localizing relevant reaction molecules. The mRNA compartmentalization-based vaccine boosts a strong immune response and effectively inhibits tumor growth and metastasis, offering a robust strategy for cancer immunotherapy.
