The role of CYP1A inhibition in the embryotoxic interactions between hypoxia and polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures in zebrafish (Danio rerio)

CYP1A 抑制在斑马鱼 (Danio rerio) 缺氧与多环芳烃 (PAH) 和 PAH 混合物之间的胚胎毒性相互作用中的作用

阅读:5
作者:Carrie R Fleming, Richard T Di Giulio

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants with elevated concentrations in waters that may also experience hypoxia. Previous research has shown interactions between hypoxia and some PAHs (fluoranthene, α-naphthoflavone) but no interaction with others (benzo[a]pyrene (BaP), β-naphthoflavone). Here we examine how hypoxia (7.4% oxygen, ~35% of normoxia) affects the embryotoxicity of PAHs that act through different mechanisms and the role that CYP1A inhibition may play in these interactions. About 500 μg/l BaP and 1-200 μg/l benzo[k]fluoranthene (BkF) interacted synergistically with hypoxia to induce pericardial edema in developing zebrafish (Danio rerio). Hypoxia protected from the embryotoxicity of pyrene (PY) and had no effect on the toxicity of polychlorinated biphenyl-126. Despite previous reports of other CYP1A inhibitors interacting with hypoxia, up to 2,000 μg/l dibenzothiophene, 2-aminoanthracene (AA), and carbazole (CB) all failed to induce embryotoxicity under normoxic or hypoxic conditions. The toxicity of PAH mixtures--including binary mixtures of BaP/AA and BaP/CB and two environmentally relevant, complex mixtures--were exacerbated severely by hypoxia to induce or worsen pericardial edema and cause mortality. The interactions between hypoxia and BkF and PY were closely mimicked by morpholino knockdown of CYP1A, indicating a potential role for metabolism of these compounds in their toxicity. Our results indicate that various PAHs may exhibit synergistic, antagonistic or additive toxicity with hypoxia. The enhanced toxicity of environmental mixtures of PAHs under hypoxia suggests that risk assessments that do not take into account potential interactions with hypoxia may underestimate the threat of PAHs to fish in contaminated sites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。