Epigenetic regulation of genetic integrity is reprogrammed during cloning

克隆过程中对遗传完整性的表观遗传调控进行重新编程

阅读:6
作者:Patricia Murphey, Yukiko Yamazaki, C Alex McMahan, Christi A Walter, Ryuzo Yanagimachi, John R McCarrey

Abstract

Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。