Microbial composition of enigmatic bird parasites: Wolbachia and Spiroplasma are the most important bacterial associates of quill mites (Acariformes: Syringophilidae)

神秘鸟类寄生虫的微生物组成:沃尔巴克氏体和螺原体是羽毛螨最重要的细菌共生体(螨形目:羽毛螨科)

阅读:6
作者:Eliza Glowska, Zuzanna Karolina Filutowska, Miroslawa Dabert, Michael Gerth

Background

The microbiome is an integral component of many animal species, potentially affecting behavior, physiology, and other biological properties. Despite this importance, bacterial communities remain vastly understudied in many groups of invertebrates, including mites. Quill mites (Acariformes: Syringophilidae) are a poorly known group of permanent bird ectoparasites that occupy quills of feathers and feed on bird subcutaneous tissue and fluids. Most of the known species have strongly female-biased sex ratio, and it was hypothesized that this is caused by endosymbiotic bacteria. Previously, Anaplasma phagocytophilum (Foggie) and a high diversity of Wolbachia strains were detected in quill mites via targeted PCR screens. Here, we use an unbiased 16S rRNA gene amplicon sequencing approach to determine other bacteria that potentially impact quill mite biology.

Results

We performed 16S rRNA gene amplicon sequencing of 126 quill mite individuals from eleven species parasitizing twelve species (four families) of passeriform birds. In addition to Wolbachia, we found Spiroplasma as potential symbiont of quill mites. Consistently, high Spiroplasma titers were only found in individuals of two mite species associated with finches of the genus Carduelis, suggesting a history of horizontal transfers of Spiroplasma via the bird host. Furthermore, there was evidence for Spiroplasma negatively affecting Wolbachia titers. We found no evidence for the previously reported Anaplasma in quill mites, but detected sequences of high similarity to the potential pathogens Brucella and Bartonella at low abundances. Other amplicon sequence variants (ASVs) could be assigned to a diverse number of bacterial taxa, including several that were previously isolated from bird skin. Further, many frequently found ASVs were assigned to taxa that show a very broad distribution with no strong prior evidence for symbiotic association with animals. We interpret these findings as evidence for a scarcity of resident microbial associates (other than inherited symbionts) in quill mites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。