Direct likelihood inference on the cause-specific cumulative incidence function: A flexible parametric regression modelling approach

对特定原因累积发生率函数的直接似然推断:一种灵活的参数回归建模方法

阅读:6
作者:Sarwar Islam Mozumder, Mark Rutherford, Paul Lambert

Abstract

In a competing risks analysis, interest lies in the cause-specific cumulative incidence function (CIF) that can be calculated by either (1) transforming on the cause-specific hazard or (2) through its direct relationship with the subdistribution hazard. We expand on current competing risks methodology from within the flexible parametric survival modelling framework (FPM) and focus on approach (2). This models all cause-specific CIFs simultaneously and is more useful when we look to questions on prognosis. We also extend cure models using a similar approach described by Andersson et al for flexible parametric relative survival models. Using SEER public use colorectal data, we compare and contrast our approach with standard methods such as the Fine & Gray model and show that many useful out-of-sample predictions can be made after modelling the cause-specific CIFs using an FPM approach. Alternative link functions may also be incorporated such as the logit link. Models can also be easily extended for time-dependent effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。