Pravastatin suppresses matrix metalloproteinase expression and activity in human articular chondrocytes stimulated by interleukin-1β

普伐他汀抑制白细胞介素-1β刺激的人关节软骨细胞中基质金属蛋白酶的表达和活性

阅读:7
作者:Joseph F Baker, Pauline M Walsh, Damien P Byrne, Kevin J Mulhall

Background

Matrix metalloproteinases are catabolic enzymes that play a key role in the articular cartilage degeneration evident in degenerative and inflammatory conditions of articular cartilage. The

Conclusions

Treatment with pravastatin of stimulated human chondrocytes leads to significant down-regulation of selected MMP genes and a non-significant reduction in MMP enzyme activity. Our results provide further evidence that statins may have a role to play in future treatment of disease affecting articular chondrocytes.

Methods

Normal human chondrocytes were stimulated with interleukin (IL)-1β for 6 h to induce MMP expression, simulating a catabolic state, and then treated with pravastatin (1, 5 and 10 μM) for a further 18 h before cell lysates and supernatants were harvested. Cells stimulated with IL-1β but not treated with pravastatin served as controls. Real-time polymerase chain reaction (PCR) was used to assess expression of MMP-3 and MMP-9 mRNA. MMP enzyme activity was assessed using a fluorescent MMP-specific substrate. Statistical analysis was performed using analysis of variance (ANOVA).

Results

MMP-3 and MMP-9 mRNA expression was reduced at all concentrations tested with statistically significant trends in reduction (p = 0.002 and <0.001, respectively). Analysis of culture supernatants revealed that pravastatin treatment led to a reduction in total MMP activity but not to a statistically significant degree (p = 0.07). Conclusions: Treatment with pravastatin of stimulated human chondrocytes leads to significant down-regulation of selected MMP genes and a non-significant reduction in MMP enzyme activity. Our results provide further evidence that statins may have a role to play in future treatment of disease affecting articular chondrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。