Background
Matrix metalloproteinases are catabolic enzymes that play a key role in the articular cartilage degeneration evident in degenerative and inflammatory conditions of articular cartilage. The
Conclusions
Treatment with pravastatin of stimulated human chondrocytes leads to significant down-regulation of selected MMP genes and a non-significant reduction in MMP enzyme activity. Our results provide further evidence that statins may have a role to play in future treatment of disease affecting articular chondrocytes.
Methods
Normal human chondrocytes were stimulated with interleukin (IL)-1β for 6 h to induce MMP expression, simulating a catabolic state, and then treated with pravastatin (1, 5 and 10 μM) for a further 18 h before cell lysates and supernatants were harvested. Cells stimulated with IL-1β but not treated with pravastatin served as controls. Real-time polymerase chain reaction (PCR) was used to assess expression of MMP-3 and MMP-9 mRNA. MMP enzyme activity was assessed using a fluorescent MMP-specific substrate. Statistical analysis was performed using analysis of variance (ANOVA).
Results
MMP-3 and MMP-9 mRNA expression was reduced at all concentrations tested with statistically significant trends in reduction (p = 0.002 and <0.001, respectively). Analysis of culture supernatants revealed that pravastatin treatment led to a reduction in total MMP activity but not to a statistically significant degree (p = 0.07). Conclusions: Treatment with pravastatin of stimulated human chondrocytes leads to significant down-regulation of selected MMP genes and a non-significant reduction in MMP enzyme activity. Our results provide further evidence that statins may have a role to play in future treatment of disease affecting articular chondrocytes.
