Combined examination of sequence and copy number variations in human deafness genes improves diagnosis for cases of genetic deafness

联合检查人类耳聋基因的序列和拷贝数变异可提高遗传性耳聋病例的诊断率

阅读:6
作者:Haiting Ji #, Jingqiao Lu #, Jianjun Wang, Huawei Li, Xi Lin

Background

Copy number variations (CNVs) are the major type of structural variation in the human genome, and are more common than DNA sequence variations in populations. CNVs are important factors for human genetic and phenotypic diversity. Many CNVs have been associated with either resistance to diseases or identified as the cause of diseases. Currently little is known about the role of CNVs in causing deafness. CNVs are currently not analyzed by conventional genetic analysis

Conclusions

We studied how CNVs in known deafness genes may result in deafness. Data provided here served as a basis to explain how CNVs disrupt normal functions of deafness genes. These results may significantly expand our understanding about how various types of genetic mutations cause deafness in humans.

Methods

Coding regions of the deafness genes were captured by a hybridization-based method and processed through the standard next-generation sequencing (NGS) protocol using the Illumina platform. Samples hybridized together in the same reaction were analyzed to obtain CNVs. A read depth based method was used to measure CNVs at the resolution of a single exon.

Results

Among 79 sporadic cases clinically diagnosed with sensorineural hearing loss, we identified previously-reported disease-causing sequence mutations in 16 cases. In addition, we identified a total of 97 CNVs (72 CNV gains and 25 CNV losses) in 27 deafness genes. The CNVs included homozygous deletions which may directly give rise to deleterious effects on protein functions known to be essential for hearing, as well as heterozygous deletions and CNV gains compounded with sequence mutations in deafness genes that could potentially harm gene functions. Conclusions: We studied how CNVs in known deafness genes may result in deafness. Data provided here served as a basis to explain how CNVs disrupt normal functions of deafness genes. These results may significantly expand our understanding about how various types of genetic mutations cause deafness in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。