Cinnamic Aldehyde, the main monomer component of Cinnamon, exhibits anti-inflammatory property in OA synovial fibroblasts via TLR4/MyD88 pathway

肉桂醛是肉桂的主要单体成分,通过 TLR4/MyD88 通路在 OA 滑膜成纤维细胞中发挥抗炎作用

阅读:7
作者:Pu Chen, Jun Zhou, Anmin Ruan, Lingfeng Zeng, Jun Liu, Qingfu Wang

Abstract

Cinnamon is a wildly used traditional Chinese herbal medicine for osteoarthritis (OA) treatment, but the underlying mechanism remains ambiguous. The purpose of this study is to explore the mechanism of cinnamic aldehyde (CA), a bioactive substance extracted from Cinnamon, on synovial inflammation in OA. A total of 144 CA-OA co-targeted genes were identified by detect databases (PubChem, HIT, TCMSP, TTD, DrugBank and GeneCards). The results of GO enrichment analysis indicated that these co-targeted genes have participated in many biological processes including 'inflammatory response', 'cellular response to lipopolysaccharide', 'response to drug', 'immune response', 'lipopolysaccharide-mediated signalling pathway', etc. KEGG pathway analysis showed these co-targeted genes were mainly enriched in 'Toll-like receptor signalling pathway', 'TNF signalling pathway', 'NF-kappa B signalling pathway', etc. Molecular docking demonstrated that CA could successfully bind to TLR2 and TLR4. The results of in vitro experiments showed no potential toxicity of 10, 20 and 50 μM/L CA on human OA FLS, and CA can significantly inhibit the inflammation in LPS-induced human FLS. Further experimental mechanism evidence confirmed CA can inhibited the inflammation in LPS-induced human OA FLS via blocking the TLR4/MyD88 signalling pathway. Our results demonstrated that CA exhibited strong anti-inflammation effect in OA FLS through blocking the activation of TLR4/MyD88 signalling pathway, suggesting its potential as a hopeful candidate for the development of novel agents for the treatment of OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。