Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold

新型左氧氟沙星负载介孔二氧化硅微球/纳米羟基磷灰石/聚氨酯复合支架的成骨和抗菌双重功能

阅读:7
作者:Zhiping Kuang, Guangming Dai, Ruijie Wan, Dongli Zhang, Chen Zhao, Cheng Chen, Jidong Li, Hongchen Gu, Wei Huang

Abstract

Lev/MSNs/n-HA/PU has been proved to be a novel scaffold material to treat bone defect caused by chronic osteomyelitis. We have previously identified that this material can effectively treat chronic osteomyelitis caused by Staphylococcus aureus in vivo. However, the potential mechanisms of antibacterial and osteogenic induction properties remain unclear. Thus, for osteogenesis property, immunohistochemistry, PCR, and Western blot were performed to detect the expression of osteogenic markers. Furthermore, flow cytometry and TUNEL were applied to analyze MC3T3-E1 proliferation and apoptosis. For antibacterial property, the material was co-cultivated with bacteria, bacterial colony forming units was counted and the release time of the effective levofloxacin was assayed by agar disc-diffusion test. Moreover, scanning electron microscope was applied to observe adhesion of bacteria. In terms of osteogenic induction, we found BMSCs adherently grew more prominently on Lev/MSNs/n-HA/PU. Lev/MSNs/n-HA/PU also enhanced the expression of osteogenic markers including OCN and COL1α1, as well as effectively promoted the transition from G1 phase to G2 phase. Furthermore, Lev/MSNs/n-HA/PU could reduce apoptosis of MC3T3-E1. Besides, both Lev/MSNs/n-HA/PU and n-HA/PU materials could inhibit bacterial colonies, while Lev/MSNs/n-HA/PU possessed a stronger antibacterial activities, and lower bacterial adhesion than n-HA/PU. These results illustrated that Lev/MSNs/n-HA/PU composite scaffold possess favorable compatibility in vitro, which induce osteogenic differentiation of MSCs, promote proliferation and differentiation of MC3T3-E1, and inhibit apoptosis. Moreover, clear in vitro antibacterial effect of Lev/MSNs/n-HA/PU was also observed. In summary, this study replenishes the potential of Lev/MSNs/n-HA/PU composite scaffold possess dual functions of anti-infection and enhanced osteogenesis for future clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。