Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats

杏仁核内源性大麻素会以性别特异性的方式受到捕食者气味压力的影响,并调节雌性大鼠的听觉惊吓反应

阅读:8
作者:Lucas Albrechet-Souza, Andrei S Nastase, Matthew N Hill, Nicholas W Gilpin

Abstract

Understanding sex differences in behavioral and molecular effects of stress has important implications for understanding the vulnerability to chronic psychiatric disorders associated with stress response circuitry. The amygdala is critical for emotional learning and generating behavioral responses to stressful stimuli, and preclinical studies indicate that amygdalar endocannabinoid (eCB) signaling regulates emotional states. This study measured eCB contents in the basolateral (BLA) and central (CeA) amygdala of male and female rats exposed to predator odor stress (bobcat urine) and tested for contextual avoidance 24 h later. Stressed females had lower levels of 2-arachidonoyl glycerol (2-AG) in the BLA and higher levels of anandamide (AEA) in the CeA, while exposure to bobcat urine did not affect amygdalar eCB contents in males. We previously reported that female rats exposed to bobcat urine exhibit blunted acoustic startle reactivity (ASR) 48 h after predator odor stress. Therefore, we tested the hypothesis that intra-BLA injection of a diacylglycerol lipase (DAGL) inhibitor (which would be expected to reduce 2-AG levels in BLA) and intra-CeA injection of a fatty acid amide hydrolase (FAAH) inhibitor (which would be expected to increase AEA levels in CeA) would mimic previously observed predator odor stress-induced reductions in ASR. Contrary to our hypothesis, microinjections of either the DAGL inhibitor DO34 into the BLA or the FAAH inhibitor URB597 into the CeA significantly increased ASR in females compared to vehicle-treated rats. These findings describe sex-specific effects of predator odor stress on amygdalar eCBs, and new roles for amygdalar eCBs in regulating behavior in females.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。