A small molecule enhances arrestin-3 binding to the β2-adrenergic receptor

小分子增强 Arrestin-3 与 β2-肾上腺素受体的结合

阅读:4
作者:Han Kurt, Ali Akyol, Cagdas Devrim Son, Chen Zheng, Irene Gado, Massimiliano Meli, Erica Elisa Ferrandi, Ivan Bassanini, Francesca Vasile, Vsevolod V Gurevich, Aylin Nebol, Esra Cagavi, Giulia Morra, Ozge Sensoy

Abstract

G protein-coupled receptor (GPCR) signaling is terminated by arrestin binding to a phosphorylated receptor. Binding propensity has been shown to be modulated by stabilizing the pre-activated state of arrestin through point mutations or C-tail truncation. Here, we hypothesize that pre-activated rotated states can be stabilized by small molecules, and this can promote binding to phosphorylation-deficient receptors, which underly a variety of human disorders. We performed virtual screening on druggable pockets identified on pre-activated conformations in Molecular Dynamics trajectories of arrestin-3, and found a compound targeting an activation switch, the back loop at the inter-domain interface. According to our model, consistent with available biochemical and structural data, the compound destabilized the ionic lock between the finger and the back loop, and enabled transition of the `gate loop` towards the pre-activated state, which stabilizes pre-activated inter-domain rotation. The predicted binding pocket is consistent with saturation-transfer difference NMR data indicating close contact between the piperazine moiety of the compound and C/finger loops. The compound increases in-cell arrestin-3 binding to phosphorylation-deficient and wild-type β2-adrenergic receptor, but not to muscarinic M2 receptor, as verified by FRET and NanoBiT. This study demonstrates that the back loop can be targeted to modulate interaction of arrestin with phosphorylation-deficient GPCRs in a receptor-specific manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。