Myelin basic protein binds to and inhibits the fibrillar assembly of Abeta42 in vitro

髓鞘碱性蛋白在体外与 Abeta42 结合并抑制其纤维组装

阅读:8
作者:Michael D Hoos, Mahiuddin Ahmed, Steven O Smith, William E Van Nostrand

Abstract

The deposition of amyloid beta-protein (Abeta) fibrils into plaques within the brain parenchyma and along cerebral blood vessels is a hallmark of Alzheimer's disease. Abeta peptides are produced through the successive cleavage of the Abeta precursor protein by beta- and gamma-secretase, producing peptides between 39 and 43 amino acids in length. The most common of these are Abeta40 (the most abundant) and Abeta42. Abeta42 is more fibrillogenic than Abeta40 and has been implicated in early Abeta plaque deposition. Our previous studies determined that myelin basic protein (MBP) was capable of inhibiting fibril formation of a highly fibrillogenic Abeta peptide containing both E22Q (Dutch) and D23N (Iowa) mutations associated with familial forms of cerebral amyloid angiopathy [Hoos, M. D., et al. (2007) J. Biol. Chem. 282, 9952-9961]. In this study, we show through a combination of biochemical and ultrastructural techniques that MBP is also capable of inhibiting the beta-sheet fibrillar assembly of the normal Abeta42 peptide. These findings suggest that MBP may play a role in regulating the deposition of Abeta42 and thereby also may regulate the early formation of amyloid plaques in Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。