Spinel cobalt-based binary metal oxides as emerging materials for energy harvesting devices: synthesis, characterization and synchrotron radiation-enabled investigation

尖晶石钴基二元金属氧化物作为能量收集装置的新兴材料:合成、表征和同步辐射研究

阅读:8
作者:Abdelelah Alshanableh, Yusuf Selim Ocak, Bashar Aljawrneh, Borhan Aldeen Albiss, Khaled Shawakfehc, Latif U Khane, Messaoud Harfouchee, Saja Alrousan

Abstract

The synthesis and characterization of spinel cobalt-based metal oxides (MCo2O4) with varying 3d-transition metal ions (Ni, Fe, Cu, and Zn) were explored using a hydrothermal process (140 °C for two hours) to be used as alternative counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed distinct morphologies for each metal oxide, such as NiCo2O4 nanosheets, Cu Co2O4 nanoleaves, Fe Co2O4 diamond-like, and Zn Co2O4 hexagonal-like structures. The X-ray diffraction analysis confirmed the cubic spinel structure for the prepared MCo2O4 films. The functional groups of MCo2O4 materials were recognized in metal oxides throughout Fourier transform infrared (FTIR) analysis. The local structure analysis using X-ray absorption fine structure (XAFS) at Fe and Co K-edge identified octahedral (Oh) Co3+ and tetrahedral (Td) Co2+ coordination, with Zn2+ and Cu2+ favoring Td sites, while Ni3+ and Fe3+ preferred Oh active sites. Further investigations utilizing the Fourier transformation (FT) analysis showed comparable coordination numbers and interatomic distances ranked as Co-Cu > Co-Fe > Zn-Co > Co-Ni. Furthermore, the utilization of MCo2O4 thin films as counter electrodes in DSSC fabrication showed promising results. Notably, solar cells based on CuCo2O4 and ZnCo2O4 counter electrodes showed 1.9% and 1.13% power conversion efficiency, respectively. These findings indicate the potential of employing these binary metal oxides for efficient and cost-effective photovoltaic device production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。