Programming aliphatic polyester degradation by engineered bacterial spores

利用工程细菌孢子对脂肪族聚酯进行降解

阅读:4
作者:Ziyu Cui, Masamu Kawada, Yue Hui, Seunghyun Sim

Abstract

Enzymatic degradation of plastics is a sustainable approach to addressing the growing issue of plastic accumulation. The primary challenges for using enzymes as catalysts are issues with their stability and recyclability, further exacerbated by their costly production and delicate structures. Here, we demonstrate an approach that leverages engineered spores that display target enzymes in high density on their surface to catalyze aliphatic polyester degradation and create self-degradable materials. Engineered spores display recombinant enzymes on their surface, eliminating the need for costly purification processes. The intrinsic physical and biological characteristics of spores enable easy separation from the reaction mixture, repeated reuse, and renewal. Engineered spores displaying lipases completely degrade aliphatic polyesters and retain activity through four cycles, with full activity recovered through germination and sporulation. Directly incorporating spores into polyesters results in robust materials that are completely degradable. Our study offers a straightforward and sustainable biocatalytic approach to plastic degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。