Analysis of TEM micrographs with deep learning reveals APOE genotype-specific associations between HDL particle diameter and Alzheimer's dementia

利用深度学习分析 TEM 显微照片,揭示高密度脂蛋白颗粒直径与阿尔茨海默病痴呆之间的 APOE 基因型特异性关联

阅读:3
作者:Jack Jingyuan Zheng, Brian Vannak Hong, Joanne K Agus, Xinyu Tang, Fei Guo, Carlito B Lebrilla, Izumi Maezawa, Lee-Way Jin, Wyatt N Vreeland, Dean C Ripple, Angela M Zivkovic

Abstract

High-density lipoprotein (HDL) particle diameter distribution is informative in the diagnosis of many conditions, including Alzheimer's disease (AD). However, obtaining an accurate HDL size measurement is challenging. We demonstrated the utility of measuring the diameter of more than 1,800,000 HDL particles with the deep learning model YOLOv7 (you only look once) from micrographs of 183 HDL samples, including patients with dementia or normal cognition (controls). This method was shown to be more efficient and accurate than conventional image analysis software. Using this method, we found a higher abundance of small HDLs in participants with dementia compared to controls in patients with the apolipoprotein E (APOE) ε3ε4 genotype, whereas patients with the APOE ε3ε3 genotype had higher variability in the abundance of different HDL subclasses. Our results show an example of accurate individual HDL particle diameter measurement for large-scale clinical samples, which can be expanded to characterize the relationship between disease risk and other nanoparticles in the sub-20-nm diameter size range.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。