Interleukin-1β Drives Disease Progression in Arrhythmogenic Cardiomyopathy

白细胞介素-1β 促进心律失常性心肌病的病情进展

阅读:7
作者:Vinay R Penna, Junedh M Amrute, Morgan Engel, Emily A Shiel, Waleed Farra, Elisa N Cannon, Colleen Leu-Turner, Pan Ma, Ana Villanueva, Haewon Shin, Alekhya Parvathaneni, Joanna Jager, Carlos Bueno-Beti, Angeliki Asimaki, Kory J Lavine, Jeffrey E Saffitz, Stephen P Chelko

Abstract

Arrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including PKP2, DSP, and DSG2. Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals. Here we performed single nucleus RNA sequencing (snRNAseq) and spatial transcriptomics on myocardial samples from patients with ACM and control donors. We identified disease-associated spatial niches characterized by co-existence of fibrotic and inflammatory cell types and failing cardiac myocytes. The inflammatory-fibrotic niche co-localized to areas of cardiac myocyte loss and was comprised of FAP (fibroblast activation protein) and POSTN (periostin) expressing fibroblasts and macrophages expressing NLRP3 (NLR family pyrin domain containing 3) and NFκB activated genes. Using homozygous Desmoglein-2 mutant (Dsg2 mut/mut ) mice, we identified analogous populations of Postn expressing fibroblasts and inflammatory macrophage populations that co-localized within diseased areas. Detailed single cell RNA sequencing analysis of inflammatory macrophage subsets that were increased in ACM samples revealed high levels of interleukin-1β (Il1b) expression. To delineate the possible benefit of targeting IL-1β in ACM, we treated Dsg2 mut/mut mice with an anti-IL-1β neutralizing antibody and observed attenuated fibrosis, reduced levels of inflammatory cytokines and chemokines, preserved cardiac function, and diminished conduction slowing and automaticity, key mechanisms of arrhythmogenesis. These results suggest that currently approved therapeutics that target IL-1β or IL-1 signaling may improve outcomes for patients with ACM.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。