Study on Thermal Cycling Reliability of Epoxy-Enhanced SAC305 Solder Joint

环氧树脂增强SAC305焊点热循环可靠性研究

阅读:11
作者:Peng Zhang, Songbai Xue, Lu Liu, Jianhao Wang, Hiroaki Tatsumi, Hiroshi Nishikawa

Abstract

In this work, epoxy was added into commercial Sn-3.0Ag-0.5Cu (SAC305) solder paste to enhance the thermal cycling reliability of the joint. The microstructure and fracture surface were observed using a scanning electron microscope/energy dispersive spectrometer (SEM/EDS), and a shear test was performed on the thermally cycled joint samples. The results indicated that during the thermal cycling test, the epoxy protective layer on the surface of the epoxy-enhanced SAC305 solder joint could significantly alleviate the thermal stress caused by coefficients of thermal expansion (CTE) mismatch, resulting in fewer structural defects. The interfacial compound of the original SAC305 solder joints gradually coarsened due to the accelerated atomic diffusion, but epoxy-enhanced SAC305 solder joints demonstrated a thinner interfacial layer and a smaller IMC grain size. Due to the reduced stress concentration and the additional mechanical support provided by the cured epoxy layer, epoxy-enhanced SAC305 solder joints displayed superior shear performance compared to the original joint during the thermal cycling test. After 1000 thermal cycles, Cu-Sn IMC regions were observed on the fracture surfaces of the original SAC305 solder joint, exhibiting brittle fracture characteristics. However, the fracture of the SAC305 solder joint with 8 wt.% epoxy remained within the solder bulk and exhibited a ductile fracture mode. This work indicates that epoxy-enhanced SAC305 solder pastes display high thermal cycling reliability and could meet the design needs of advanced packaging technology for high-performance electronic packaging materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。