Inflammatory cytokines disrupt astrocyte exosomal HepaCAM-mediated protection against neuronal excitotoxicity in the SOD1G93A ALS model

炎症细胞因子破坏星形胶质细胞外泌体 HepaCAM 介导的 SOD1G93A ALS 模型中对神经元兴奋性毒性的保护作用

阅读:6
作者:Shijie Jin, Yang Tian, Jonathan Hacker, Xuan Chen, Marcela Bertolio, Caroline Reynolds, Rachel Jarvis, Jingwen Hu, Vanessa Promes, Dilara Halim, Fen-Biao Gao, Yongjie Yang

Abstract

Astrocyte secreted signals substantially affect disease pathology in neurodegenerative diseases. It remains little understood about how proinflammatory cytokines, such as interleukin-1α/tumor necrosis factor-α/C1q (ITC), often elevated in neurodegenerative diseases, alter astrocyte-secreted signals and their effects in disease pathogenesis. By selectively isolating astrocyte exosomes (A-Exo.) and employing cell type-specific exosome reporter mice, our current study showed that ITC cytokines significantly reduced A-Exo. secretion and decreased spreading of focally labeled A-Exo. in diseased SOD1G93A mice. Our results also found that A-Exo. were minimally associated with misfolded SOD1 and elicited no toxicity to mouse spinal and human iPSC-derived motor neurons. In contrast, A-Exo. were neuroprotective against excitotoxicity, which was completely diminished by ITC cytokines and partially abolished by SOD1G93A expression. Subsequent proteomic characterization of A-Exo. and genetic analysis identified that surface expression of glial-specific HepaCAM preferentially mediates A-Exo's axon protection effect. Together, our study defines a cytokine-induced loss-of-function mechanism of A-Exo. in protecting neurons from excitotoxicity in amyotrophic lateral sclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。