HAMR: high-throughput annotation of modified ribonucleotides

HAMR:修饰核苷酸的高通量注释

阅读:6
作者:Paul Ryvkin, Yuk Yee Leung, Ian M Silverman, Micah Childress, Otto Valladares, Isabelle Dragomir, Brian D Gregory, Li-San Wang

Abstract

RNA is often altered post-transcriptionally by the covalent modification of particular nucleotides; these modifications are known to modulate the structure and activity of their host RNAs. The recent discovery that an RNA methyl-6 adenosine demethylase (FTO) is a risk gene in obesity has brought to light the significance of RNA modifications to human biology. These noncanonical nucleotides, when converted to cDNA in the course of RNA sequencing, can produce sequence patterns that are distinguishable from simple base-calling errors. To determine whether these modifications can be detected in RNA sequencing data, we developed a method that can not only locate these modifications transcriptome-wide with single nucleotide resolution, but can also differentiate between different classes of modifications. Using small RNA-seq data we were able to detect 92% of all known human tRNA modification sites that are predicted to affect RT activity. We also found that different modifications produce distinct patterns of cDNA sequence, allowing us to differentiate between two classes of adenosine and two classes of guanine modifications with 98% and 79% accuracy, respectively. To show the robustness of this method to sample preparation and sequencing methods, as well as to organismal diversity, we applied it to a publicly available yeast data set and achieved similar levels of accuracy. We also experimentally validated two novel and one known 3-methylcytosine (3mC) sites predicted by HAMR in human tRNAs. Researchers can now use our method to identify and characterize RNA modifications using only RNA-seq data, both retrospectively and when asking questions specifically about modified RNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。