(N)-methanocarba 2,N6-disubstituted adenine nucleosides as highly potent and selective A3 adenosine receptor agonists

(N)-亚甲基-2,N6-二取代腺嘌呤核苷作为高效、选择性 A3 腺苷受体激动剂

阅读:4
作者:Susanna Tchilibon, Bhalchandra V Joshi, Soo-Kyung Kim, Heng T Duong, Zhan-Guo Gao, Kenneth A Jacobson

Abstract

A series of ring-constrained (N)-methanocarba-5'-uronamide 2,N(6)-disubstituted adenine nucleosides have been synthesized via Mitsunobu condensation of the nucleobase precursor with a pseudosugar ring containing a 5'-ester functionality. Following appropriate functionalization of the adenine ring, the ester group was converted to the 5'-N-methylamide. The compounds, mainly 2-chloro-substituted derivatives, were tested in both binding and functional assays at human adenosine receptors (ARs), and many were found to be highly potent and selective A(3)AR agonists. Selected compounds were compared in binding to the rat A(3)AR to assess their viability for testing in rat disease models. The N(6)-(3-chlorobenzyl) and N(6)-(3-bromobenzyl) analogues displayed K(i) values at the human A(3)AR of 0.29 and 0.38 nM, respectively. Other subnanomolar affinities were observed for the following N(6) derivatives: 2,5-dichlorobenzyl, 5-iodo-2-methoxybenzyl, trans-2-phenyl-1-cyclopropyl, and 2,2-diphenylethyl. Selectivity for the human A(3)AR in comparison to the A(1)AR was the following (fold): the N(6)-(2,2-diphenylethyl) analogue 34 (1900), the N(6)-(2,5-dimethoxybenzyl) analogue 26 (1200), the N(6)-(2,5-dichlorobenzyl) and N(6)-(2-phenyl-1-cyclopropyl) analogues 20 and 33 (1000), and the N(6)-(3-substituted benzyl) analogues 17, 18, 28, and 29 (700-900). Typically, even greater selectivity ratios were obtained in comparison with the A(2A) and A(2B)ARs. The (N)-methanocarba-5'-uronamide analogues were full agonists at the A(3)AR, as indicated by the inhibition of forskolin-stimluated adenylate cyclase at a concentration of 10 microM. The N(6)-(2,2-diphenylethyl) derivative was an A(3)AR agonist in the (N)-methanocarba-5'-uronamide series, although it was an antagonist in the ribose series. Thus, many of the previously known groups that enhance A(3)AR affinity in the 9-riboside series, including those that reduce intrinsic efficacy, may be adapted to the (N)-methanocarba nucleoside series of full agonists.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。