PYCR2 promotes growth and aerobic glycolysis in human liver cancer by regulating the AKT signaling pathway

PYCR2通过调节AKT信号通路促进人类肝癌的生长和有氧糖酵解

阅读:6
作者:Shaoyan Wang, Wenyan Yi, Zhenyu Xu, Minyu Shi

Abstract

Hepatocellular carcinoma (HCC) is the world's third most fatal cancer. Because metabolic rewiring is a hallmark of HCC, studies into the causes of aberrant glycolysis could provide insight into novel HCC therapeutic strategies. Pyrroline-5-carboxylate reductase 2 (PYCR2), a key enzyme of proline synthesis, has previously been found to play vital roles in various malignancies regarding amino acid metabolism and oxidative stress response. Our study investigated the mechanistic function of PYCR2 in HCC. We used Gene Expression Profiling Interactive Analysis to perform bioinformatics analysis of PYCR2 expression and survival in human HCC patients based on the Cancer Genome Atlas database. The function of PYCR2 in cell viability and glycolysis was assessed using CCK-8 and ECAR assays. Transducing shRNA or overexpression vectors into the HCC cell line altered the expression status of PYCR2. PYCR2 expression was validated using quantitative real-time PCR and Western blot. In mouse xenograft models, the role of PYCR2 in HCC tumor formation was confirmed. PYCR2 was overexpressed in human HCC tumor tissue and was associated with a poor prognosis. The functional assay revealed that silencing PYCR2 inhibited cell viability, glycolysis, and AKT activation. Furthermore, the xenograft experiment demonstrated that silencing PYCR2 significantly inhibited tumor growth and Ki67 expression. On the other hand, PYCR2 overexpression significantly promoted cell viability and glycolysis, which could be inhibited by either a glycolysis inhibitor or an AKT inhibitor, indicating that PYCR2 may function via glycolysis and the AKT pathway. Moreover, despite the overexpression of PYCR2 in vivo, treatment with a glycolysis inhibitor may considerably suppress tumor growth. Our findings suggest that PYCR2 may play an oncogenic role in HCC growth by promoting glycolysis and activating AKT, emphasizing PYCR2's clinical relevance in HCC management as a novel potential therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。