Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels

基于三偏磷酸钠的 PEDOT:PSS 导电水凝胶的制备

阅读:3
作者:Madelyn Reynolds, Lindsay M Stoy, Jindi Sun, Prince Emmanuel Opoku Amponsah, Lin Li, Misael Soto, Shang Song

Abstract

Conductive hydrogels are highly attractive for biomedical applications due to their ability to mimic the electrophysiological environment of biological tissues. Although conducting polymer polythiophene-poly-(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonate (PSS) alone exhibit high conductivity, the addition of other chemical compositions could further improve the electrical and mechanical properties of PEDOT:PSS, providing a more promising interface with biological tissues. Here we study the effects of incorporating crosslinking additives, such as glycerol and sodium trimetaphosphate (STMP), in developing interpenetrating PEDOT:PSS-based conductive hydrogels. The addition of glycerol at a low concentration maintained the PEDOT:PSS conductivity with enhanced wettability but decreased the mechanical stiffness. Increasing the concentration of STMP allowed sufficient physical crosslinking with PEDOT:PSS, resulting in improved hydrogel conductivity, wettability, and rheological properties without glycerol. The STMP-based PEDOT:PSS conductive hydrogels also exhibited shear-thinning behaviors, which are potentially favorable for extrusion-based 3D bioprinting applications. We demonstrate an interpenetrating conducting polymer hydrogel with tunable electrical and mechanical properties for cellular interactions and future tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。