Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling

化疗诱导的外泌体 miR-378a-3p 和 miR-378d 通过激活 EZH2/STAT3 信号促进乳腺癌干细胞特性和化学抗性

阅读:6
作者:Qianxi Yang #, Shaorong Zhao #, Zhendong Shi #, Lixia Cao #, Jingjing Liu, Teng Pan, Dongdong Zhou, Jin Zhang

Background

Not all breast cancer (BC) patients who receive neoadjuvant chemotherapy achieve a pathologic complete response (pCR), but the reasons for this are unknown. Previous studies have shown that exosomes produced in the tumor microenvironment in response to chemotherapy promote a chemotherapy-resistant phenotype in tumors. However, the role of BC chemotherapy-elicited exosomes in regulating chemoresistance is poorly understood.

Conclusion

This study revealed a novel mechanism of acquired chemoresistance whereby chemotherapy activates the EZH2/STAT3 axis in BC cells, which then secrete chemotherapy-elicited exosomes enriched in miR-378a-3p and miR-378d. These exosomes are absorbed by chemotherapy-surviving BC cells, leading to activation of the WNT and NOTCH stem cell pathways via the targeting of DKK3 and NUMB and subsequently resulting in drug resistance. Therefore, blocking this adaptive mechanism during chemotherapy may reduce the development of chemotherapy resistance and maximize the therapeutic effect.

Methods

Using commercial kits, serum exosomes were extracted from patients before neoadjuvant chemotherapy, after one cycle of chemotherapy and after four cycles of chemotherapy consisting of doxorubicin (DOX) and paclitaxel (PTX). Their miRNAs were sequenced, and the correlation between the sequencing

Results

Here, we provide clinical evidence that chemotherapy-elicited exosomal miR-378a-3p and miR-378d are closely related to the chemotherapy response and that exosomes produced by BC cells after stimulation with DOX or PTX deliver miR-378a-3p and miR-378d to neighboring cells to activate WNT and NOTCH stemness pathways and induce drug resistance by targeting Dickkopf 3 (DKK3) and NUMB. In addition, STAT3, which is enhanced by zeste homolog 2 (EZH2), bound to the promoter regions of miR-378a-3p and miR-378d, thereby increasing their expression in exosomes. More importantly, chemotherapeutic agents combined with the EZH2 inhibitor tazemetostat reversed chemotherapy-elicited exosome-induced drug resistance in a nude mouse tumor xenograft model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。