Characterization of Delta-7 Alkenone Desaturase in Haptophyte Gephyrocapsa huxleyi Through Heterologous Expression in Tisochrysis lutea

通过在 Tisochrysis lutea 中异源表达对 Haptophyte Gephyrocapsa huxleyi 中的 Delta-7 烯酮去饱和酶进行表征

阅读:8
作者:Kohei Yoneda #, Chinatsu Kobayashi #, Hiroya Araie, Rikuri Morita, Ryuhei Harada, Yasuteru Shigeta, Hirotoshi Endo, Yoshiaki Maeda, Iwane Suzuki

Abstract

The marine haptophyte Gephyrocapsa huxleyi is an ecologically and geochemically important phytoplankton due to its contribution to the global carbon cycle and its ability to biosynthesize certain alkenones. These alkenones are long-chain alkyl ketones with two to four trans-type double bonds. The genes encoding alkenone desaturase in G. huxleyi have not been experimentally characterized so far, partly due to the difficulty of inducing genetic transformation in G. huxleyi. Therefore, we introduced the putative alkenone delta-7 desaturase of G. huxleyi (designated "DesT") to the transformable and alkenone-producing haptophyte Tisochrysis lutea. We found two types of coding sequences for DesT, which are probably derived from the expression products of different alleles, and designated them "DesT-1" and "DesT-2." The ratio of C37:3 to C37:2 methyl alkenone in the DesT-1 transformant was significantly higher than that in the mock strain that expressed only the hygromycin resistance gene, suggesting that DesT-1 was an alkenone delta-7 desaturase in G. huxleyi. In the protein structure, a tunnel where a substrate alkenone penetrates was predicted to be located around the histidine box of DesT, and hydrophilic and hydrophobic amino acids were respectively located at the proximal (near side to the histidine box) and distal ends of the tunnel. This is the first study to conduct experimental characterization of the alkenone metabolism-related gene in G. huxleyi. The heterologous expression system using T. lutea paves the way for further characterization of the alkenone metabolism-related genes in less transformable haptophytes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。