Protein engineering and preclinical development of a GM-CSF receptor antibody for the treatment of rheumatoid arthritis

用于治疗类风湿性关节炎的 GM-CSF 受体抗体的蛋白质工程和临床前开发

阅读:5
作者:R R Minter, E S Cohen, B Wang, M Liang, I Vainshtein, G Rees, L Eghobamien, P Harrison, D A Sims, C Matthews, T Wilkinson, P Monk, C Drinkwater, L Fabri, A Nash, M McCourt, L Jermutus, L Roskos, I K Anderson, M A Sleeman

Background and purpose

For antibody therapies against receptor targets, in vivo outcomes can be difficult to predict because of target-mediated clearance or antigen 'sink' effects. The purpose of this work was to engineer an antibody to the GM-CSF receptor α (GM-CSFRα) with pharmacological properties optimized for chronic, s.c. treatment of rheumatoid arthritis (RA) patients. Experimental approach: We used an in silico model of receptor occupancy to guide the target affinity and a combinatorial phage display approach for affinity maturation. Mechanism of action and internalization assays were performed on the optimized antibody in vitro before refining the modelling predictions of the eventual dosing in man. Finally, in vivo pharmacology studies in cynomolgus monkeys were carried out to inform the predictions and support future clinical development. Key

Purpose

For antibody therapies against receptor targets, in vivo outcomes can be difficult to predict because of target-mediated clearance or antigen 'sink' effects. The purpose of this work was to engineer an antibody to the GM-CSF receptor α (GM-CSFRα) with pharmacological properties optimized for chronic, s.c. treatment of rheumatoid arthritis (RA) patients. Experimental approach: We used an in silico model of receptor occupancy to guide the target affinity and a combinatorial phage display approach for affinity maturation. Mechanism of action and internalization assays were performed on the optimized antibody in vitro before refining the modelling predictions of the eventual dosing in man. Finally, in vivo pharmacology studies in cynomolgus monkeys were carried out to inform the predictions and support future clinical development. Key

Results

Antibody potency was improved 8600-fold, and the target affinity was reached. The refined model predicted pharmacodynamic effects at doses as low as 1 mg kg(-1) and a study in cynomolgus monkeys confirmed in vivo efficacy at 1 mg kg(-1) dosing. Conclusions and implications: This rational approach to antibody drug discovery enabled the isolation of a potent molecule compatible with chronic, s.c. self-administration by RA patients. We believe this general approach enables the development of optimal biopharmaceuticals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。